МИНОБРНАУКИ РОССИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «ВГУ»)

УТВЕРЖДАЮ

Заведующий кафедрой органической химии

Т.В. Елисеева

03.04.2025 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ Б1.О.11 Аналитическая химия

1. Код и наименование специальности: 33.05.01 Фармация

2. Специализация: фармация

3. Квалификация выпускника: Провизор

4. Форма обучения: очная

5. Кафедра, отвечающая за реализацию дисциплины: аналитической химии

6. Составители программы:

Васильева Вера Ивановна, д.х.н., профессор

Крысанова Татьяна Анатольевна, к.х.н., доцент

7. Рекомендована: НМС химического факультета, протокол № 10-03 от 27.03.2025

8. Учебный год:2025-2026, 2026-2027 Семестр(ы): 2, 3

9. Цели и задачи учебной дисциплины

Целью освоения учебной дисциплины является:

- обучение студентов теоретическим основам и практическим навыкам в использовании классических химических и физико-химических методов количественного анализа.

Задачи учебной дисциплины:

научить студентов:

- используя полученные теоретические и практические знания, правильно выбирать методы исследования веществ в соответствии с поставленной проблемой;
- разрабатывать оптимальную схему анализа лекарственных средств, биологических объектов и практически провести его;
- осуществлять статистическую обработку результатов исследования и интерпретировать полученные результаты.

10. Место учебной дисциплины в структуре ООП:

Обязательная часть Блока 1. Дисциплины (модули).

Изучение названого курса предполагает, что студент владеет знаниями дисциплин базового профессионального цикла: физики (основы молекулярной физики и термодинамики); химии (физической). Дисциплина, для которой данная дисциплина является предшествующей: «Фармацевтическая химия».

11. Планируемые результаты обучения по дисциплине/модулю (знания, умения, навыки), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями) и индикаторами их достижения:

	Γ			
Код	Название компе-	Код(ы)	Индикатор(ы)	Планируемые результаты обучения
	тенции			
ОПК-1	Способен ис-	ОПК-1.2	Применяет основ-	Знать: основные законы, лежащие в основе
	пользовать ос-		ные физико-	аналитической химии; современные методы и
	новные биологи-		химические и хи-	способы выполнения химического и физико-
	ческие, физико-		мические методы	химического анализа вещества для установ-
	химические, хи-		анализа для раз-	ления качественного состава и количествен-
	мические, мате-		работки, исследо-	ных определений; метрологические характе-
	матические ме-		ваний и экспертизы	ристики современных методов химического
	тоды для разра-		лекарственных	анализа лекарственных средств; устройство
	ботки, исследо-		средств, лекар-	приборов, используемых для анализа ве-
	ваний и экспер-		ственного расти-	ществ.
	тизы лекар-		тельного сырья и	Уметь: выбирать оптимальный способ каче-
	ственных		биологических	ственного и количественного анализа лекар-
	средств, изго-		объектов	ственных средств и биологических объектов,
	товления лекар-			используя соответствующее современное
	ственных препа-			аналитическое оборудование; проводить ста-
	ратов			тистическую обработку данных химических и
				физико-химических исследований.
				Владеть: техникой химического эксперимен-
				та, навыками работы с химической посудой и
				с современными физическими приборами,
				используемыми для качественного и количе-
				ственного анализа лекарственных средств;
				метод оценки погрешности измерений.

12. Объем дисциплины в зачетных единицах/час. — 8/288.

Форма промежуточной аттестации зачет, экзамен

13. Трудоемкость по видам учебной работы

		Трудоемкост	Ь
Вид учебной работы	Всего	По сем	естрам
		2	3
Контактная работа	168	84	84
в том числе: лекции	32	16	16

лабораторные	136	68	68
Самостоятельная работа	84	60	24
Форма промежуточной аттестации зачет, экзамен	36	-	36
Итого:	288	144	144

13.1. Содержание дисциплины

п/п			Реализация
	Наименование раздела дисциплины	Содержание раздела дисциплины	раздела дис- циплины с помощью он- лайн-курса, ЭУМК *
		1. Лекции	
1.1	Аналитическая химия как наука. Методологические аспекты аналитической химии.	Предмет и задачи аналитической химии. Этапы исторического развития и значение аналитической химии для решения проблем фармации. Виды и объекты анализа. Методы аналитической химии и их классификация. Точность, чувствительность, экспрессность и избирательность аналитического определения. Общая схема аналитического определения. Применение методов аналитической химии в фармации. Фармацевтический анализ. Фармакопейные методы.	УЭМК «Ана- литическая химия»:https:// edu.vsu.ru/cou rse/view.php?i d=9872
1.2	Метрологические основы аналитической химии.	Метрология химического анализа. Систематические и случайные ошибки. Статистические характеристики случайных ошибок. Расчет результатов анализа.	УЭМК «Ана- литическая химия»:https:// edu.vsu.ru/cou rse/view.php?i d=98729872
1.3	Термодинамика и кинетика реакций и процессов. Химическое равновесие в реальных системах.	Общая характеристика реакций в растворе. Химическое равновесие и закон действия масс. Факторы, влияющие на химическое равновесие: температура, ионная сила раствора, комплексообразование, окислительно-восстановительные реакции, образование малорастворимых и малодиссоциированных соединений. Концентрация растворов. Условие материального баланса и электронейтральности. Ионная сила растворов. Конкурирующие реакции, коэффициент побочной реакции. Термодинамическая, концентрационная и условная константы равновесия, их взаимосвязь.	УЭМК «Ана- литическая химия»:https:// edu.vsu.ru/cou rse/view.php?i d=9872
1.4	Качественный химический анализ.	Качественный химический анализ. Классификация методов качественного анализа (дробный и систематический, макро-, полумикро-, микро-, ультрамикро-анализ). Аналитические реакции и реагенты, используемые в качественном анализе (специфические, селективные, групповые). Использование качественного анализа в фармации. Качественный анализ катионов и анионов. Аналитическая классификация катионов по группам. Кислотно-основная классификация катионов по группам. Систематический анализ катионов по кислотно-основному методу. Аналитические реакции катионов различных аналитических групп. Качественный анализ анионов. Аналитическая классификация анионов по группам (по способности к образованию малорастворимых соединений, по окислительно-восстановительным свойствам). Аналитические реакции анионов различных аналитических групп. Методы анализа смесей анионов различных аналитических групп. Анализ смесей катионов и анионов (качественный химический анализ вещества).	УЭМК «Аналитическая химия»:https://edu.vsu.ru/course/view.php?id=9872
1.5	Гравиметрический ме-	травиметрический метод анализа. Гетерогенное рав-	УЭМК «Ана-

			T
	тод анализа.	новесие. Константа гетерогенного равновесия. Условия образования и растворения осадков: эффекты одноименного иона, ионной силы, конкурирующих химических реакций. Влияние рН на полноту осаждения малорастворимых гидроксидов и малорастворимых солей слабых кислот. Механизм образования кристаллических и аморфных осадков. Влияние различных факторов на структуру и дисперсность осадка. Поверхностное и внутреннее соосаждение. Старение осадков. Осаждаемая и гравиметрическая форма и требования к ним в анализе. Расчеты гравиметрических определений.	литическая химия»:https:// edu.vsu.ru/cou rse/view.php?i d=9872
1.6	Титриметрический ме-	Титриметрический анализ. Характеристика метода.	УЭМК «Ана-
	тод анализа.	Стандартные растворы. Способы титрования. Точка эквивалентности и конечная точка титрования. Расчеты титрования. Протолитическая теория кислот и оснований. Автопротолиз воды. Ионное произведение воды. Константы кислотности и основности. Расчет рН в растворах сильных и слабых протолитов, амфолитов, буферных растворах. Кислотно-основные индикаторы. Ионно-хромофорная теория индикаторов. Индикаторные ошибки. Кривые кислотно-основного титрования. Расчет, построение и анализ типичных кривых титрования сильной и слабой кислоты щелочью. Выбор индикатора. Комплексонометрическое титрование. Равновесие в растворах комплексных соединений: природа иона металла и лиганда, заряд, ионный радиус, среда. Этилендиаминтетрауксусная кислота и ее комплексы с металлами. Хелатометрическое титрование. Кривые титрования, их расчет и построение. Влияние различных факторов на величину скачка на кривой титрования (устойчивость комплексонатов, концентрация ионов металла и комплексона, рН раствора). Индикаторы комплексонометрии. Металлохромные индикаторы. Оксредметрия. Равновесный окислительновость комплексонатов, концентрация ионов металла и комплексона, рН раствора). Индикаторы комплексоноветрии. Металлохромные индикаторы. Оксредметрия. Равновесный окислительновостановительный потенциал и константа равновесия реакции. Расчет электродного потенциала полуреакций. Кривые титрования. Способы определения точки эквивалентности. Методы оксредметрии: перманганатометрия, дихроматометрия, иодометрия, броматометрия. Титрование в неводных средах Сущность метода кислотно-основного титрования в неводных средах. Классификация растворителей, применяемых в неводном титровании. Факторы, определяющие выбор протолитического растворителя. Применение кислотно-основного титрования в неводных средах	литическая химия»:https:// edu.vsu.ru/cou rse/view.php?i d=9872
1.7	Инструментальные (физико-химические) методы анализа. Спектральные методы анализа.	основного титрования в неводных средах. Введение в спектроскопию. Классификация спектральных методов. Спектральные характеристики и шкала электромагнитных волн. Эмиссионный спектральный анализ. Атомные спектры. Качественный и количественный эмиссионный анализ. Пламенная фотометрия и ее применение в фармации и медицине. Молекулярная абсорбционная спектроскопия. Основной закон светопоглощения и причины отклонения от него. Абсорбционность (оптическая плотность) и све-	УЭМК «Ана- литическая химия»:https:// edu.vsu.ru/cou rse/view.php?i d=15446
		топропускание. Молярный коэффициент светопоглощения (экстинция). Аддитивность оптической плотности.	

		· · ·	T
		Методы абсорбционного анализа. Фотометрия и спек-	
		трофотометрия: сравнительный анализ и применение	
		в фармации для качественного и количественного определения. Анализ многокомпонентных систем.	
		Инфракрасная спектроскопия. Структурно-групповой и	
		количественный анализ органических и неорганиче-	
		ских веществ по ИК спектрам.	
		Атомно-абсорбционный анализ. Аппаратура, схема и	
		приборы. Количественный атомно-абсорбционный	
		анализ.	
1.8	Электрохимические	Электрохимические методы анализа. Классификация	УЭМК «Ана-
	методы анализа.	электрохимических методов. Обратимые и необратимые электрохимические системы. Классификация	литическая xимия»:https://
		электродов в потенциометрии. Стеклянный электрод.	edu.vsu.ru/cou
		Хлоридсеребряный электрод. Ионселективные элек-	rse/view.php?i
		троды. Виды и примеры мембранных электродов.	d=15446
		Прямая ионометрия. Потенциометрическое титрова-	
		ние. Законы электролиза. Сущность кулонометрии при	
		постоянном потенциале и постоянной силе тока. Куло-	
		нометрическое титрование. Виды вольтамперометрии.	
1.9	Хроматография.	Амперометрическое титрование. Хроматография. Классификация методов разделения	УЭМК «Ана-
1.9	лроматография.	и концентрирования веществ в аналитической химии.	литическая
		История развития и классификация методов хромато-	химия»:https://
		графии по применяемой технике, механизму разделе-	edu.vsu.ru/cou
		ния веществ, по агрегатному состоянию и способу от-	rse/view.php?i
		носительного перемещения фаз.	d=15446
		Теоретические основы метода. Хроматографический	
		пик и его элюционные характеристики. Теории сорб-	
		ции, теоретических тарелок. Кинетическая теория	
		хроматографии. Газовая хроматография: газо-адсорбционная и газо-	
		жидкостная хроматография. Качественный и количе-	
		ственный анализ в хроматографии. Высокоэффектив-	
		ная жидкостная хроматография. Ионообменная и ион-	
		ная хроматография.	
		Тонкослойная хроматография. Распределительная	
		хроматография. Хроматография на бумаге.	
		Осадочная хроматография. Понятие о эксклюзионной	
1.40	Manager	хроматографии. Гель-хроматография.	VONALC A
1.10	Методы разделения и	Экстракция. Основные понятия. Типы экстракционных	УЭМК «Ана-
	выделения компонен- тов. Экстракция.	систем. Экстракционное равновесие. Закон распределения Нернста-Шилова. Концентрирование микроко-	литическая химия»:https://
	тов. Окстракция.	личеств элементов экстракционными методами.	edu.vsu.ru/cou
		Выделение элементов методами экстракции. Реэкс-	rse/view.php?i
		тракция. Использование процессов экстракции в фар-	d=15446
		мацевтическом анализе.	
		2. Лабораторные занятия	
2.1	Качественный химиче-	Лабораторная работа. Аналитические реакции катио-	УЭМК «Ана-
	ский анализ.	нов I-VI аналитических групп.	литическая
		<u>Лабораторная работа.</u> Аналитические реакции анио-	химия»:https://
		нов I-III аналитических групп.	edu.vsu.ru/cou
		Лабораторная работа. Разделение смеси катионов Си (II), Mg (II), Zn (II), Cd (II) и их обнаружение с помощью	rse/view.php?i d=9872
		качественных реакций.	3 0012
2.2	Гравиметрический ме-	<u>Пабораторная работа.</u> Определение содержания Ва ²⁺	УЭМК «Ана-
	тод анализа.	в хлориде бария методом осаждения.	литическая
		Лабораторная работа. Определение кристаллизаци-	химия»:https://
		онной воды в хлориде бария методом отгонки.	edu.vsu.ru/cou
			rse/view.php?i
	T	Reference and second second	d=9872
2.3	Титриметрический ме-	Лабораторная работа. Кислотно-основное титрование.	УЭМК «Ана-
	тод анализа.	Приготовление первичных и вторичных стандартных растворов (0,1 M раствора Na ₂ CO ₃ по навеске; 0,1 M	литическая химия»:https://
L		растворов (о, г ivi раствора iva2003 по навеске, 0, г ivi	//.гqли.«кимил

		раствора HCI). Стандартизация раствора HCI. Определение временной жесткости воды. <u>Лабораторная работа.</u> Комплексонометрия. Стандартизация раствора трилона Б. Определение общей жесткости воды методом комплексонометрии. <u>Лабораторная работа.</u> Окислительновосстановительное титрование. Стандартизация раствора КМпО ₄ . Определение содержания Fe (II) в растворе методом перманганатометрии.	edu.vsu.ru/cou rse/view.php?i d=9872
2.4	Инструментальные (физико-химические) методы анализа. Спектральные методы анализа.	Лабораторная работа. Фотометрическое определение Fe (III) или Cu (II) в растворе. <u>Лабораторная работа.</u> Спектрофотометрическое определение содержания цианокобаламина (витамина В ₁₂) в препарате	УЭМК «Ана- литическая химия»:https:// edu.vsu.ru/cou rse/view.php?i d=15446
2.5	Электрохимические методы анализа.	Лабораторная работа. Определение ионов Fe (II) потенциометрическим титрованием дихроматом калия. Лабораторная работа. Определение содержания новокаина в препарате методом потенциометрического титрования. Лабораторная работа. Ионометрическое определение NO ₃ -, NH ₄ +, K+, Na+ в растворе. Лабораторная работа. Определение концентрации тиосульфат-иона в растворе.	УЭМК «Ана- литическая химия»:https:// edu.vsu.ru/cou rse/view.php?i d=15446
2.6	Хроматография.	Лабораторная работа. Газохроматографическое определение примесей в этаноле. Лабораторная работа. Определение примесей гидразина в изониазиде методом ТСХ Лабораторная работа. Разделение смеси аминокислот методом бумажной хроматографии. Лабораторная работа. Определение содержания Na ₂ SO ₄ методом ионообменной хроматографии.	УЭМК «Ана- литическая химия»:https:// edu.vsu.ru/cou rse/view.php?i d=15446
2.7	Методы разделения и выделения компонентов. Экстракция.	Лабораторная работа. Разделение смеси катионов Си (II), Mg (II), Zn (II), Al (III) методом экстракции с последующей идентификацией.	УЭМК «Ана- литическая химия»:https:// edu.vsu.ru/cou rse/view.php?i d=15446

13.2. Темы (разделы) дисциплины и виды занятий

No			Виды за	нятий (количество	часов)	
№ п/п	Наименование темы (раздела) дисциплины	Лекции	Практические	Лабораторные	Самостоятельная работа	Всего
1	Аналитическая химия как наука. Методологические аспекты аналитической химии.	2	-	0	8	10
2	Метрологические основы аналитической химии.	2	-	0	8	10
3	Термодинамика и кинетика реакций и процессов. Химическое равновесие в реальных системах.	2	-	0	14	16
4	Качественный химиче- ский анализ.	2	-	22	8	32
5	Гравиметрический ме- тод анализа.	4	-	20	8	32
6	Титриметрический ме- тод анализа.	4	-	26	14	44
7	Инструментальные (фи-	6	-	20	8	34

	зико-химические) мето-					
	ды анализа. Спектраль-					
	ные методы анализа.					
8	Электрохимические ме-	1	_	18	6	28
U	тоды анализа.	T	_	10	0	20
9	Хроматография.	4	-	20	8	32
	Методы разделения и					
10	выделения компонентов.	2	-	10	2	14
	Экстракция.					
	Итого:	32	-	136	84	252

14. Методические указания для обучающихся по освоению дисциплины

Организация изучения дисциплины предполагает следующие виды работ студентов: с конспектами лекций; выполнение заданий преподавателя при подготовке к занятиям по наиболее сложным разделам дисциплины с использованием основной и дополнительной литературы, а также интернет-ресурсов.

Методические рекомендации по организации самостоятельной работы

Самостоятельная работа как форма организации учебной работы предусматривает следующие ее виды:

- повторение лекционного материала;
- изучение учебной, учебно-методической литературы и иных источников по инструментальным методам анализа и их применению;
- подготовка к экзамену.

Цель самостоятельной работы — это углубление и расширение знаний в области аналитической химии, инструментальных методов анализа; формирование навыка и интереса к самостоятельной познавательной деятельности, что послужит в будущем основанием для написания выпускной квалификационной работы.

В процессе изучения курса необходимо обратить внимание на самоконтроль знаний. С этой целью обучающийся после изучения каждой отдельной темы и затем всего курса по учебнику и дополнительной литературе должен проверить уровень своих знаний с помощью контрольных вопросов, которые помещены в конце каждой темы.

Для самостоятельного изучения отводятся темы, хорошо разработанные в учебных пособиях, научных монографиях и не могут представлять особенных трудностей при изучении.

Самостоятельная работа реализуется: непосредственно в процессе аудиторных занятий на кафедре при выполнении лабораторных работ; в библиотеке, дома.

Текущий контроль осуществляется в форме контрольной работы.

15. Перечень основной и дополнительной литературы, ресурсов интернет, необходимых для освоения дисциплины

а) основная литература:

№ п/п	Источник
1.	Апарнев, А. И. Аналитическая химия : учебное пособие / А. И. Апарнев. — Новосибирск : НГТУ, 2021. — 92 с. — ISBN 978-5-7782-4423-8. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/216272
2.	Аналитическая химия / Т. А. Крысанова, И. В. Шкутина .— Воронеж : Издательско- полиграфический центр Воронежского государственного университета, 2011 .— 80 с. — 79 с. — URL: https://rucont.ru/efd/225954

б) дополнительная литература:

№ п/п	Источник
1.	Аналитическая химия (количественный анализ) : учебное пособие / В. В. Хасанов, Х. Б. Кушхов, С. А. Эльчепарова [и др.]. — Нальчик : КБГУ, 2023. — 119 с. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/378992
2.	Вернигора, А. Н. Аналитическая химия: теоретические основы : учебное пособие / А. Н. Вернигора, Н. В. Волкова, О. В. Зорькина. — Пенза : ПГУ, 2020. — 140 с. — ISBN 978-5-907262-64-5. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/322685

№ п/п	Ресурс
1	Сайт Зональной Научной библиотеки Воронежского государственного университета. — Режим
1.	доступа: http://www.lib.vsu.ru
2.	Электронная химическая энциклопедия, http://www.cnshb.ru/AKDiL/0048/default.shtm
3.	«Аналитика-Мир профессионалов» ИНТЕРНЕТ ПОРТАЛ ХИМИКОВ-АНАЛИТИКОВ
	http://www.anchem.ru/
4.	Интернет-ресурсы по методам химического анализа, http://www.rusanalytchem.org
5.	Интернет портал для химиков, http://www.chemweb.com
6.	Образовательный портал "Электронный университет ВГУ "https://edu.vsu.ru/
7.	ЭУМК https://edu.vsu.ru/course/view.php?id=15446

16. Перечень учебно-методического обеспечения для самостоятельной работы

№ п/п	Источник
1	Аналитические реакции и реагенты качественного фармацевтического анализа : учебное пособие / составители : Н. А. Беланова, О. Н. Хохлова, И. В. Воронюк, Т. А. Крысанова, В. И. Васильева, Е. В. Бутырская. – Воронеж : Издательский дом ВГУ, 2022. – 95 с.
2	Потенциометрические методы анализа лекарственных веществ / В.И. Васильева, О.Ф. Стоянова, Э.М. Акберова, В.Ф. Селеменев, И.В. Шкутина Воронеж: ИПЦ "Научная книга", 2015 106 с.
3	Васильева В. И. Электрохимический анализ лекарственных средств. Кондуктометрия, ионометрия, кулонометрия : учебное пособие / В. И. Васильева .— Воронеж : Издательский дом ВГУ, 2018 .— 116 с.
4	Спектральные методы анализа. Практическое руководство: учебное пособие / под ред. В.Ф. Селеменева, В.Н. Семенова / В.И. Васильева, О.Ф. Стоянова, И.В. Шкутина, С.И. Карпов, В.Ф. Селеменев, В.Н. Семенов СПб.: "ЛАНЬ", 2014 416 с.
5	Практические работы по аналитической химии. Титриметрические методы анализа: учебно- методическое пособие / Т.В. Елисеева, И.В. Воронюк, Л.В. Золотарева, В.Ф. Селеменев Воро- неж: ИПЦ "Научная книга", 2015 97 с.
6	Соколовский А.Е. Физико-химические методы анализа: учеб. пособие / А.Е. Соколовский, Е.В. Радион Минск: БГТУ, 2007 128 с.
7	Сумина Е.Г. Тонкослойная хроматография. Теоретические основы и практическое применение / Е.Г. Сумина, С.Н. Штыков, Н.В. Тюрина Саратов: изд-во Саратовского университета, 2002 108 с.
8	Физико-химические методы анализа природных соединений: хроматография и спектроскопия / Т.А. Крысанова, Д.Л. Котова, В.А. Крысанов, А. Н. Зяблов, В.Ф. Селеменев Воронеж: ИПЦ "Научная книга", 2016 62 с.
9	Аналитическая химия (задачи, тесты, контрольные работы) / Т.А. Крысанова, И.В. Воронюк, О.Н. Хохлова, Н.А. Беланова Воронеж: ИПЦ "Научная книга", 2016 104 с.
10	Ерина О.В. Экстракция. Физико-химические основы и практическое применение: учебное пособие / О.В. Ерина, В.Ю. Хохлов Воронеж: Изд-во ВГУ, 2015 60 с.

17. Образовательные технологии, используемые при реализации учебной дисциплины, включая дистанционные образовательные технологии (ДОТ, электронное обучение (ЭО), смешанное обучение):

Учебная дисциплина реализуется с использованием электронного обучения и дистанционных образовательных технологий. Для этого необходимо использовать ресурсы: https://edu.vsu.ru/course/view.php?id=9872.

https://edu.vsu.ru/course/view.php?id=15446.

При реализации дисциплины могут использоваться:

- 1. слайд-презентации.
- 2. информационные (справочные) системы (например, Консультант плюс).
- 3.Организация взаимодействия со студентами посредством электронной почты, социальных сетей (вконтакте) и мессенджеров.
- 4. Информационно-обучающая среда Moodle
- В случае необходимости перехода на дистанционный режим обучения для создания электронных курсов, чтения лекций он-лайн и проведения лабораторно- практических занятий используется информационные ресурсы Образовательного портала "Электронный университет ВГУ (https://edu.vsu.ru), базирующегося на системе дистанционного обучения Moodle, развернутой в университете.

При реализации учебной дисциплины используются элементы электронного обучения (ЭО) и дистанционные образовательные технологии (ДОТ) в части освоения лекционного материала, проведения текущей и промежуточной аттестации, проведения части лабораторных работ и самостоятельной работы обучающихся по дисциплине, позволяющие

обеспечивать опосредованное взаимодействие (на расстоянии) преподавателей и обучающихся, включая инструменты электронной информационно-образовательной среды ВГУ «Электронный университет ВГУ» (https://edu.vsu.ru), проведение вебинаров, видеоконференций, взаимодействие в соцсетях, посредством электронной почты, мессенджеров. Для освоения дисциплины рекомендуется список литературы и ресурсы для электронного обучения (ЭО) (п. 15).

Для достижения цели освоения учебной дисциплины, повышения качества образования и формирования компетенций используются аудиторные (лекции, лабораторные) и внеаудиторные/интерактивные (самостоятельная работа студентов) формы обучения.

– Аудиторные:

Основными видами аудиторной работы являются лекции и лабораторные работы. Они решают задачи формирования и развития профессиональных умений и навыков обучающихся.

- *Лекции* включают в себя последовательное изложение материала преподавателем в том числе с использованием мультимедийного проектора для компьютерной презентации и видеоматериалов.
- *Лабораторные работы* форма организации обучения, интегрирующая теоретико-методологические знания, практические умения и навыки студентов в едином процессе учебно-исследовательского характера.

В ходе выполнения лабораторных работ студенты вырабатывают умения анализировать, делать выводы и обобщения, пользоваться различными приемами измерений, инструментальными методами анализа, оформлять результаты экспериментов. Формируются практические профессиональные навыки обращения с аналитическим оборудованием.

— *Внеаудиторные: р*абота в глобальной сети (использование Интернет-технологий), поиск научной и методической информации.

18. Материально-техническое обеспечение дисциплины:

Учебная аудитория (*пекционная*): доска магнитная меловая мультимедиа-проектор, ноутбук, проектор, экран для проектора

WinPro 8, Office Standard 2019, Kaspersky Endpoint Security, Google Chrome, Mozilla Firefox

Лаборатория химического практикума: лабораторное оборудование и материалы (химические реактивы, весы аналитические, весы технические, дистилляторы лабораторные, иономеры, кулонометрические установки, фотоэлектроколориметры, пламенные анализаторы жидкости, спектрофотометры, хроматографы газовые, хроматографические колонки, ионообменные колонки, хроматографическая бумага, сушильные шкафы, муфельные печи, химические реактивы, химическая посуда, хлоридсеребряные электроды сравнения и различные ионоселективные электроды)

Весовая: специализированная мебель, весы VIBRA HTR-120CE, технические весы

Помещение для самостоятельной работы обучающихся, компьютерный класс (ауд. 271): специализированная мебель, компьютеры с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду ВГУ

WinPro 8, OfficeSTD, Kaspersky Endpoint Security, Google Chrome

19. Оценочные средства для проведения текущего контроля успеваемости и промежуточной аттестации

По решению кафедры оценки за зачет могут быть выставлены по результатам текущей аттестации обучающегося в семестре, но не ранее, чем на заключительном занятии. При несогласии студента с оценкой последний вправе сдавать экзамен/зачет на общих основаниях.

Порядок оценки освоения обучающимися учебного материала определяется содержанием следующих разделов дисциплины:

№ п/п	Наименование раздела дис- циплины (модуля)	Компетенция	Индикатор(ы) дости- жения компетенции	Оценочные средства
1.	Аналитическая химия как наука. Методологические	ОПК-1	ОПК-1.2	Устный опрос (коллоквиум №1).

№ п/п	Наименование раздела дис- циплины (модуля)	Компетенция	Индикатор(ы) дости- жения компетенции	Оценочные средства
	аспекты аналитической хи- мии.			
2.	Метрологические основы аналитической химии.	ОПК-1	ОПК-1.2	Устный опрос (коллоквиум №1).
3.	Термодинамика и кинетика реакций и процессов. Химическое равновесие в реальных системах.	ОПК-1	ОПК-1.2	Устный опрос (коллоквиум №1).
4.	Качественный химический анализ.	ОПК-1	ОПК-1.2	Устный опрос (коллоквиум №2).
5.	Гравиметрический метод анализа.	ОПК-1	ОПК-1.2	Устный опрос (коллоквиум №2).
6.	Титриметрический метод анализа.	ОПК-1	ОПК-1.2	Устный опрос (коллоквиум №3). Кон- трольная работа №1.
7.	Инструментальные (физико- химические) методы анали- за.	ОПК-1	ОПК-1.2	Устный опрос (коллоквиумы №4-6). Контрольная работа №2.
8.	Методы разделения и выде- ления компонентов. Экс- тракция.	ОПК-1	ОПК-1.2	Устный опрос (коллоквиум №6).
	Промежуточ форма конт	Перечень вопросов		

20. Типовые оценочные средства и методические материалы, определяющие процедуры оценивания

20.1. Текущий контроль успеваемости

Контроль успеваемости по дисциплине осуществляется с помощью следующих оценочных средств:

Лабораторные работы

Контрольные работы

Перечень лабораторных работ:

Качественный химический анализ

- 1. Аналитические реакции катионов I-VI аналитических групп.
- 2. Аналитические реакции анионов I-III аналитических групп.
- 3. Разделение смеси катионов Cu (II), Mg (II), Zn (II), Cd (II) и их обнаружение с помощью качественных реакций.

Количественный химический анализ

- 4. Гравиметрия. Определение содержания Ва²⁺ в хлориде бария методом осаждения.
- 5. Гравиметрия. Определение кристаллизационной воды в хлориде бария методом отгонки.
- 6. Кислотно-основное титрование. Приготовление первичных и вторичных стандартных растворов (0,1 М раствора Na₂CO₃ по навеске; 0,1 М раствора HCl). Стандартизация приготовленного раствора HCl. Определение временной жесткости воды.
- 7. Комплексонометрия. Стандартизация раствора трилона Б. Определение общей жесткости воды методом комплексонометрии.
- 8. Окислительно-восстановительное титрование. Стандартизация раствора KMnO₄. Определение содержания Fe (II) в растворе методом перманганатометрии.

Физико-химические методы анализа

- 9. Газохроматографическое определение примесей в этаноле.
- 10. Определение примесей гидразина в изониазиде методом ТСХ
- 11. Разделение смеси аминокислот методом бумажной хроматографии.
- 12. Определение содержания Na₂SO₄ методом ионообменной хроматографии.
- 13. Фотометрическое определение Fe (III) или Cu (II) в растворе.

- 14. Спектрофотометрическое определение содержания цианокобаламина (витамина В₁₂) в препарате
- 15. Определение ионов Fe (II) потенциометрическим титрованием дихроматом калия.
- 16. Определение содержания новокаина в препарате методом потенциометрического титрования.
- 17. Ионометрическое определение NO₃-, NH₄+, K+, Na+ в растворе.
- 18. Определение концентрации тиосульфат-иона в растворе.
- 19. Разделение смеси катионов Cu (II), Mg (II), Zn (II), Al (III) методом экстракции с последующей идентификацией.

Описание технологии проведения

Лабораторные работы включают самостоятельную проработку теоретического материала обучающимся, изучение методик проведения и планирование эксперимента, освоение измерительных средств, обработку и интерпретацию экспериментальных данных. В ряд работ включены контрольные задания по определению неизвестных концентраций веществ, выдаваемых преподавателем.

При защите лабораторной работы (сдаче отчета о ее выполнении) обучающийся должен уметь объяснять цели, задачи, ход проведения работы, ее результаты, сделанные выводы, а также основные конструктивные особенности используемого оборудования.

Требования к выполнению заданий (или шкалы и критерии оценивания)

Критерии оценки лабораторной работы

Критерии оценивания компетенций	Шкала оценок
Обучающийся владеет теоретическими основами методов анализа, лабораторная работа выполнена, сделаны правильные наблюдения и выводы (допускаются некоторые малосущественные ошибки, которые студент обнаруживает и быстро исправляет самостоятельно или при помощи преподавателя), что соответствует освоению компетенций.	5 баллов
Обучающийся владеет теоретическими основами методов анализа, лабораторная работа выполнена, сделаны правильные наблюдения и выводы, но допущены некоторые ошибки, которые студент обнаруживает и исправляет при помощи преподавателя.	4 балла
Обучающийся знает методику выполнения практической работы и может самостоятельно провести исследование, но не знает теоретических основ работы, делает ошибки в интерпретации полученных результатов, не может сформулировать выводы.	3 балла
Неудовлетворительная работа на занятии: обучающийся не знает методики выполнения практической работы и ее теоретических основ, не может самостоятельно провести исследование, делает грубые ошибки в интерпретации полученных результатов, не может сформулировать выводы, оформить работу, что соответствует не освоению компетенций.	2 балла
Неявка на лабораторное занятие	0 баллов

Перечень вопросов коллоквиумов:

Коллоквиум №1

- 1. Предмет и задачи аналитической химии. Виды и объекты анализа
- 2. Этапы исторического развития и значение аналитической химии для решения проблем фармации. Фармацевтический анализ.
- 3. Методы аналитической химии и их классификация.
- 4. Точность, чувствительность, экспрессность и избирательность аналитического определения.
- 5. Общая схема аналитического определения.
- 6. Систематические, случайные и грубые ошибки химического анализа. Статистические характеристики случайных ошибок. Расчет результатов анализа.
- 7. Химическое равновесие и закон действия масс. Факторы, влияющие на химическое равновесие: температура, ионная сила раствора, комплексообразование, окислительно-восстановительные реакции, образование малорастворимых соединений.
- 8.Способы выражения концентраций растворов. Ионная сила растворов. Конкурирующие реакции, коэффициент побочной реакции.
- 9. Термодинамическая, концентрационная и условная константы равновесия, их взаимосвязь.

Коллоквиум №2

- 1. Классификация методов качественного анализа. Аналитические реакции и реагенты, используемые в качественном анализе (специфические, селективные, групповые).
- 2. Использование качественного анализа в фармации. Качественный анализ катионов и анионов. Аналитическая классификация катионов по группам. Кислотно-основная классификация катионов по группам. Аналитические реакции катионов различных аналитических групп.
- 3. Качественный анализ анионов. Аналитическая классификация анионов по группам (по способности к образованию малорастворимых соединений, по окислительно-восстановительным свойствам). Аналитические реакции анионов различных аналитических групп.
- 4. Анализ смесей катионов и анионов.
- 5. Гетерогенное равновесие. Константа гетерогенного равновесия.
- 6. Условия образования и растворения осадков: эффекты одноименного иона, ионной силы, конкурирующих химических реакций. Влияние pH на полноту осаждения.
- 7. Механизм образования кристаллических и аморфных осадков. Влияние различных факторов на структуру и дисперсность осадка.
- 8. Осаждаемая и гравиметрическая форма и требования к ним в анализе. Расчеты гравиметрических определений.

Коллоквиум №3

- 1. Протолитическая теория кислот и оснований.
- 2. Автопротолиз воды. Ионное произведение воды. Константы кислотности и основности.
- 3. Расчет рН в растворах сильных и слабых протолитов, амфолитов, буферных растворах.
- 4. Кривые кислотно-основного титрования. Расчет, построение и анализ типичных кривых титрования сильной и слабой кислоты щелочью.
- 5. Ионно-хромофорная теории индикаторов. Индикаторные ошибки.
- 6. Характеристики титриметрического анализа. Стандартные растворы. Точка эквивалентности и конечная точка титрования. Расчеты титрования.
- 7. Равновесие в растворах комплексных соединений. Факторы, влияющие на устойчивость комплексных соединений: природа иона металла и лиганда, заряд, ионный радиус, среда.
- 8. Хелатометрическое титрование. Этилендиаминтетрауксусная кислота и ее комплексы с металлами. Кривые титрования, их расчет и построение. Влияние различных факторов на величину скачка на кривой титрования (устойчивость комплексонатов, концентрация ионов металла и комплексона, рН раствора).
- 9. Индикаторы комплексонометрии. Металлохромные индикаторы.
- 10. Оксредметрия. Равновесный окислительно-восстановительный потенциал и константа равновесия реакции. Расчет электродного потенциала полуреакций.
- 11. Кривые титрования оксредметрии. Способы определения точки эквивалентности.
- 12. Методы оксредметрии: перманганатометрия, дихроматометрия, иодометрия, броматометрия. Качественный химический анализ.

Коллоквиум №4

- 1. Хроматография. Классификация методов хроматографии. Теоретические основы метода. Хроматографический пик и его характеристики.
- 2. Теории сорбции. Понятие теоретических тарелок. Кинетическая теория хроматографии.
- 3. Газовая хроматография: газо-адсорбционная и газо-жидкостная хроматография. Качественный и количественный анализ в хроматографии. Высокоэффективная жидкостная хроматография.
- 4. Ионообменная и ионная хроматография.
- 5. Тонкослойная хроматография. Распределительная хроматография. Хроматография на бумаге. Осадочная хроматография.
- 6. Понятие об эксклюзионной хроматографии. Гель-хроматография.

Коллоквиум №5

- 1. Классификация спектральных методов. Спектральные характеристики и шкала электромагнитных волн.
- 2. Эмиссионный спектральный анализ. Атомные спектры. Качественный и количественный эмиссионный анализ.
- 3. Пламенная фотометрия и ее применение в фармации.
- 4. Молекулярная абсорбционная спектроскопия. Оптическая плотность и светопропускание.
- 5. Законы светопоглощения. Молярный коэффициент поглощения. Аддитивность оптической плотности.
- 6. Методы абсорбционного анализа. Фотометрия и спектрофотометрия. Анализ многокомпонентных систем.
- 7. Инфракрасная спектроскопия. Структурно-групповой и количественный анализ органических и неорганических веществ по ИК спектрам.
- 8. Атомно-абсорбционный анализ. Аппаратура. Количественный атомно-абсорбционный анализ.

Коллоквиум №6

- 1. Электрохимические методы анализа. Классификация электрохимических методов.
- 2. Обратимые и необратимые электрохимические системы.
- 3. Ионселективные электроды.
- 4. Прямая ионометрия.
- 5. Потенциометрическое титрование.
- 6. Сущность кулонометрии при постоянном потенциале. Кулонометрическое титрование.
- 7. Виды вольтамперометрии. Амперометрическое титрование.
- 8. Экстракция. Основные понятия.
- 9. Экстракционное равновесие. Закон распределения Нернста-Шилова.
- 10. Концентрирование микроколичеств элементов экстракционными методами.
- 11. Выделение элементов методами экстракции в фармацевтическом анализе.

Перечень заданий для контрольных работ (2 работы для текущей аттестации обучающихся):

КОНТРОЛЬНАЯ РАБОТА №1

- 1. Какова растворимость оксалата кальция, если его константа растворимости равна 2,29·10⁻⁹? (конкурирующими реакциями пренебречь).
- 2. Как изменится молярная концентрация иодида серебра, если к его насыщенному раствору прибавить иодид калия до концентрации $c(KI)=1,5\cdot10^{-3}$ моль/дм³. Константа растворимости иодида серебра равна $9,98\cdot10^{-17}$.
- 3. Какая масса BaCrO $_4$ содержится в 200 см 3 насыщенного раствора этой соли, если константа растворимости ее при 25 °C равна 2,4 $_1$ 0 1 0?
- 4. Какую массу пирита, содержащего около 30% серы, нужно взять для анализа, чтобы получить 0,3 г осадка BaSO₄?
- 5. Сколько миллилитров 10%-ного раствора нитрата серебра необходимо для осаждения хлорида серебра из 100,00 см³ 0,01 M раствора соляной кислоты?
- 6. Образец содержит приблизительно 2% сульфата калия и 5% нитрата калия. Рассчитать массу навески образца, необходимую для получения 0,3 г КСІО₄.
- 7. Сколько граммов $Na_2HPO_4\cdot 12H_2O$ требуется для приготовления 1 литра 10%-ного раствора, если плотность такого раствора равна 1,09 г/см³?
- 8. Рассчитайте рН 0,01 М раствора уксусной кислоты.
- 9. Рассчитайте рН 0,20 М раствора хлорида аммония.
- 10. Вычислить pH раствора, содержащего 0,10 моль/дм³ уксусной кислоты и 0,20 моль/дм³ ацетата натрия.
- 11. Рассчитать, как изменится pH, если к 1 литру буферного раствора, состоящего из 0,03 М муравьиной кислоты и 0,06 М формиата калия, добавить 1,5·10-3 моль соляной кислоты.
- 12. Вычислить молярную концентрацию и титр раствора HCl, если на титрование 0,4217 г Na₂CO₃ израсходовано 17,50 см³ этой кислоты.
- 13. На титрование раствора, содержащего 2,2525 г NaOH, израсходовано 20,05 см³ раствора соляной кислоты с титром по KOH равным 0,03885 г/см³. Вычислить массовую долю (%) гидроксида натрия в образце.
- 14. Через 20,00 см³ раствора HCI, титр которого равен 0,007860 г/см³, было пропущено некоторое количество газообразного NH₃. Избыток HCI оттитровали 6,30 см³ раствора NaOH, 1,00 см³ которого эквивалентен 1,025 см³ раствора HCI (поправочный коэффициент к концентрации). Определить массу аммиака, поглощенного раствором HCI.

КОНТРОЛЬНАЯ РАБОТА № 2

- 1. Рассчитать концентрацию Fe^{3+} (мг/дм³) и молярный коэффициент светопоглощения (ϵ) по следующим данным спектрофотометрического определения: толщина светопоглощающего слоя I=2 см; оптические плотности (D) стандартного и исследуемого раствора равны 0,28 и 0,46 соответственно; концентрация стандартного раствора C=2,00 мг/дм³.
- 2. Из навески стали массой 0,2542 г после соответствующей обработки получили 100 см³ раствора, содержащего диметилглиоксимат никеля. Оптическая плотность этого раствора относительно раствора сравнения равна 0,44. Для построения градуировочного графика взяли три стандартных раствора с содержанием 8,00; 10,00 и 12,00 мг никеля в 100 см³ и получили в тех же условиях относительные оптические плотности 0,24; 0,46 и 0,71 соответственно. Вычислить массовую долю никеля в стали
- 3. Вычислить потенциал медного электрода в растворе 0,01 M по хлориду меди и 0,01 M по сульфату меди при 25 °C.
- 4. В стандартных растворах NaF были измерены электродные потенциалы фторидселективного электрода относительно хлоридсеребрянного электрода и получены следующие данные:

С, моль/дм³	0,	0,0	0,00	0,000	0,0000
-Е. мВ	10	140	190	230	275

Исследуемый раствор, содержащий фторид-ион, объемом 10,00 см³ разбавили водой до 50,0 см³ и измерили электродный потенциал фторидселективного электрода E_X=- 210 мВ. Определить концентрацию фторид-иона в исследуемом растворе

5. Вычислить массовую долю (%) компонентов газовой смеси по следующим данным:

Компонент сме-	Пропан	Бутан	Пентан	Циклогексан
СИ				
S, mm ²	175	203	182	35

6. Ширина основания хроматографического пика этанола составляет 20 мм. Число теоретических тарелок для этанола на данной колонке равно 2000. Скорость движения ленты самописца 1200 мм/ч. Вычислить время удерживания этанола (в минутах).

Описание технологии проведения коллоквиума и контрольной работы

Оценка знаний, умений и навыков, характеризующая этапы формирования компетенций в рамках изучения дисциплины осуществляется в ходе текущей аттестации.

Текущая аттестация проводится в соответствии с Положением о текущей аттестации обучающихся по программам высшего образования Воронежского государственного университета. Текущая аттестация проводится в формах: устного опроса (коллоквиумы); письменных работ (лабораторные работы и контрольные работы). Критерии оценивания приведены ниже.

Билет обучающийся выбирает из числа предложенных и перед ответом ему предоставляется время для подготовки, обычно 40-45 мин. После того, как студент ответил на вопросы билета, преподаватель имеет право задать дополнительные и уточняющие вопросы, которые должны быть связаны с вопросами билета.

Требования к выполнению заданий (или шкалы и критерии оценивания)

Для оценивания результатов текущей успеваемости используется шкала:

- 5 баллов содержание ответа соответствует вопросу, а также не менее 6 нижеуказанным показателям;
- 4 баллов содержание ответа соответствует вопросу, а также не менее 5 нижеуказанным показателям;
- 3 балла содержание ответа соответствует вопросу, а также частично не менее 4 показателям;
- 2 балла содержание ответа соответствует вопросу, а также частично не менее 3 показателям;
- 0 баллов содержание ответа не соответствует заявленной теме или более чем 3 показателям, отказ отвечать.

Показатели оценивания:

- полнота раскрытия вопроса;
- аргументированность ответа;
- четкость, логичность, смысловое единство изложения;
- обоснованность применяемых технологий;
- грамотность изложения:
- адекватность применения технологий и методов фармацевтической технологии.

20.2 Промежуточная аттестация

Оценивание промежуточной аттестации осуществляется в соответствии с Положением об оценке промежуточной аттестации обучающихся фармацевтического факультета по результатам текущего контроля успеваемости. При этом, оценка по критерию «лабораторное занятие» определяется по среднему арифметическому, рассчитанному из оценок за все лабораторные занятия дисциплины. При неудовлетворительной работе на занятии итоговая оценка за занятие - «неудовлетворительно». При пропуске занятия итоговая оценка за занятие принимается за 0 и учитывается в текущую успеваемость. Повышение оценки за текущую успеваемость возможно в рамках индивидуальных занятий согласно графику, утвержденному на кафедре.

При несоблюдении условий, представленных в «Положением об оценке промежуточной аттестации обучающихся фармацевтического факультета по результатам текущего контроля успеваемости» студент сдает промежуточную аттестацию по оценочным средствам, предусмотренным данной программой.

Промежуточная аттестация по дисциплине осуществляется с помощью следующих оценочных средств: вопросы к зачету, вопросы к экзамену, тесты.

Промежуточная аттестация по дисциплине в 2 семестре осуществляется с помощью следующих оценочных средств:

Собеседование по билетам к зачету

Перечень вопросов к зачету:

- 1. Предмет и задачи аналитической химии. Виды и объекты анализа
- 2. Этапы исторического развития и значение аналитической химии для решения проблем фармации. Фармацевтический анализ.
- 3. Методы аналитической химии и их классификация.
- 4. Точность, чувствительность, экспрессность и избирательность аналитического определения.
- 5. Общая схема аналитического определения.
- 6. Систематические, случайные и грубые ошибки химического анализа. Статистические характеристики случайных ошибок. Расчет результатов анализа.
- 7. Химическое равновесие и закон действия масс. Факторы, влияющие на химическое равновесие: температура, ионная сила раствора, комплексообразование, окислительно-восстановительные реакции, образование малорастворимых соединений.
- 8.Способы выражения концентраций растворов. Ионная сила растворов. Конкурирующие реакции, коэффициент побочной реакции.
- 9.Термодинамическая, концентрационная и условная константы равновесия, их взаимосвязь.
- 10. Классификация методов качественного анализа. Аналитические реакции и реагенты, используемые в качественном анализе (специфические, селективные, групповые).
- 11. Использование качественного анализа в фармации. Качественный анализ катионов и анионов. Аналитическая классификация катионов по группам. Кислотно-основная классификация катионов по группам. Аналитические реакции катионов различных аналитических групп.
- 12. Качественный анализ анионов. Аналитическая классификация анионов по группам (по способности к образованию малорастворимых соединений, по окислительно-восстановительным свойствам). Аналитические реакции анионов различных аналитических групп.
- 13. Анализ смесей катионов и анионов.
- 14. Гетерогенное равновесие. Константа гетерогенного равновесия.
- 15. Условия образования и растворения осадков: эффекты одноименного иона, ионной силы, конкурирующих химических реакций. Влияние pH на полноту осаждения.
- 16. Механизм образования кристаллических и аморфных осадков. Влияние различных факторов на структуру и дисперсность осадка.
- 17. Осаждаемая и гравиметрическая форма и требования к ним в анализе. Расчеты гравиметрических определений.
- 18. Протолитическая теория кислот и оснований.
- 19. Автопротолиз воды. Ионное произведение воды. Константы кислотности и основности.
- 20. Расчет рН в растворах сильных и слабых протолитов, амфолитов, буферных растворах.
- 21. Кривые кислотно-основного титрования. Расчет, построение и анализ типичных кривых титрования сильной и слабой кислоты щелочью.
- 22. Ионно-хромофорная теории индикаторов. Индикаторные ошибки.
- 23. Характеристики титриметрического анализа. Стандартные растворы. Точка эквивалентности и конечная точка титрования. Расчеты титрования.
- 24. Равновесие в растворах комплексных соединений. Факторы, влияющие на устойчивость комплексных соединений: природа иона металла и лиганда, заряд, ионный радиус, среда.
- 25. Хелатометрическое титрование. Этилендиаминтетрауксусная кислота и ее комплексы с металлами. Кривые титрования, их расчет и построение. Влияние различных факторов на величину скачка на кривой титрования (устойчивость комплексонатов, концентрация ионов металла и комплексона, рН раствора).
- 26. Индикаторы комплексонометрии. Металлохромные индикаторы.
- 27. Оксредметрия. Равновесный окислительно-восстановительный потенциал и константа равновесия реакции. Расчет электродного потенциала полуреакций.
- 28. Кривые титрования оксредметрии. Способы определения точки эквивалентности.
- 29. Методы оксредметрии: перманганатометрия, дихроматометрия, иодометрия, броматометрия. Качественный химический анализ.

Описание технологии проведения

Промежуточная аттестация проводится в соответствии с Положением о промежуточной аттестации обучающихся по программам высшего образования.

Контрольно-измерительные материалы промежуточной аттестации включают в себя теоретические вопросы, позволяющие оценить уровень полученных знаний, позволяющие оценить степень сформированности умений.

Технология проведения зачета включает в себя:

- 1. Выдача билетов к зачету и чистых листов ответов.
- 2. Фиксирование времени начала и доведение до студентов времени окончания зачета.
- 3. Ответы обучающихся на билеты к зачету в письменном виде с заполнением листов ответов. (При необходимости в них кроме текса приводятся рисунки, схемы, таблицы, диаграммы).
- 4. Сбор билетов к зачету и листов ответов.
- 5. Проверка листов ответов.

Во время зачета обучающимся запрещается разговаривать, ходить по аудитории, пользоваться сотовыми телефонами, шпаргалками, конспектами, учебниками и другой учебнометодической литературой. Студенты, нарушившие перечисленные требования, удаляются с зачета.

Для оценивания результатов обучения при промежуточной аттестации используются следующие показатели:

- 1. Знание и владение содержанием учебного материала и понятийным аппаратом по дисциплине «Аналитическая химия».
- 2. Умение связывать теоретические знания с практическими навыками по дисциплине «Аналитическая химия».
- 3. Умение решать профессиональные задачи в сфере проведения качественного и количественного анализа различных объектов.
- 4. Способность иллюстрировать ответ примерами, фактами, данными научных исследований.

Сочетание указанных четырех показателей определяет критерии оценивания результатов обучения на зачете:

Критерии оценивания компетенций	Шкала оценок
Ответ студента на контрольно-измерительный материал не соответствует максимум любым двум из перечисленных показателей.	Зачтено
Ответ студента на контрольно-измерительный материал не соответствует трем из перечисленных показателей. Компетенции не сформированы. Обучающийся демонстрирует отрывочные, фрагментарные знания, допускает грубые профессиональные ошибки.	Незачтено

Промежуточная аттестация по дисциплине в 3 семестре осуществляется с помощью следующих оценочных средств:

Собеседование по экзаменационным билетам

Перечень вопросов к экзамену:

- 1. Предмет и задачи аналитической химии. Этапы исторического развития.
- 2. Методы аналитической химии и их классификация.
- 3. Общая схема аналитического определения.
- 4. Активность, коэффициент активности, ионная сила раствора.
- 5. Термодинамическая, концентрационная и условная константы равновесия, их взаимосвязь.
- 6. Характеристика метода титриметрического анализа. Стандартные растворы.
- 7. Виды титрования.
- 8. Закон эквивалентов. Расчеты в титриметрии.
- 9. Теории кислот и оснований. Протолитическая теория кислот и оснований.
- 10. Автопротолиз воды. Ионное произведение воды.
- 11. Константы кислотности и основности.

- 12. Расчет рН в растворах сильных протолитов.
- 13. Расчет рН в растворах слабых протолитов.
- 14. Расчет рН в растворах солей.
- 15. Буферные растворы. Расчет рН в буферных растворах.
- 16. Кислотно-основные индикаторы.
- 17. Ионно-хромофорная теория индикаторов.
- 18.Индикаторные ошибки в протолитометрии.
- 19. Кривая титрования сильной кислоты сильным основанием.
- 20. Кривая титрования слабой кислоты сильным основанием.
- 21. Равновесие в растворах комплексных соединений.
- 22. Хелатометрическое титрование.
- 23.ЭДТА и ее комплексы с металлами.
- 24. Рабочие растворы и индикаторы в комплексонометрическом титровании.
- 25. Равновесный окислительно-восстановительный потенциал и константа равновесия реакции. Уравнение Нернста.
- 26. Расчет электродного потенциала полуреакции.
- 27. Виды окислительно-восстановительного титрования.
- 28. Кривая окислительно-восстановительного титрования.
- 29. Способы определения точки эквивалентности в окислительно-восстановительном титровании.
- 30. Гравиметрия. Характеристика метода.
- 31. Понятие константы растворимости.
- 32.Связь между константой растворимости и растворимостью.
- 33. Факторы, влияющие на процесс образования осадка.
- 34.Загрязнение осадков.
- 35. Этапы гравиметрии.
- 36.Осаждаемая и гравиметрические формы.
- 37. Гравиметрический фактор.
- 38. Факторы, влияющие на полноту осаждения.
- 39. Условия образования кристаллических и аморфных осадков.
- 40. Классификация физико-химических методов анализа.
- 41. Классификация спектральных методов. Электромагнитный спектр.
- 42.Основной закон светопоглощения. Ограничения и условия его применимости.
- 43. Причины отклонения от закона Бугера-Ламберта-Бера.
- 44. Фотометрия. Преимущества и недостатки метода.
- 45. Характеристики светопоглощения в фотометрии.
- 46.Оптимальные условия для проведения количественного фотометрического анализа (выбор длины волны и концентрации).
- 47. Аддитивность оптической плотности. Схема прибора для измерения светопоглощения.
- 48. Приемы количественного фотометрического анализа.
- 49. Количественный фотометрический анализ смеси светопоглощающих веществ.
- 50. Метод дифференциальной фотометрии.
- 51. Метод эмиссионной фотометрии пламени.
- 52.Пламя и его характеристики.
- 53.Метод градуировочного графика при пламенно-эмиссионном анализе. Самоионизация и самопо-глощение.
- 54. Атомно-абсорбционная спектроскопия.
- 55.Источники излучения, атомизаторы, монохроматоры и детекторы в атомно-абсорбционной спектро-
- 56. Классификация электрохимических методов анализа.
- 57.Прямая ионометрия. Методы градуировочного графика и добавок.
- 58.Потенциометрическое титрование. Способы нахождения точки эквивалентности.
- 59. Классификация электродов в потенциометрии.
- 60.Стеклянный электрод.
- 61. Хлоридсеребряный электрод.
- 62. Законы электролиза.
- 63. Кулонометрия при постоянном потенциале и постоянной силе тока.
- 64. Теоретические основы хроматографического метода.
- 65. Уравнение Лэнгмюра.
- 66.Понятие о теоретической тарелке. Эффективность колонки.
- 67. Кинетическая теория хроматографии.
- 68. Классификация хроматографических методов анализа.
- 69.Основные характеристики хроматографического пика.
- 70. Газовая хроматография: адсорбенты, техника, качественное и количественное определение.
- 71. Газо-жидкостная хроматография.

- 72. Ионообменная хроматография. Ионообменники и их свойства.
- 73. Экстракция.
- 74. Кислотно-основная классификация катионов по группам.
- 75. Аналитические реакции катионов различных аналитических групп.
- 76. Аналитическая классификация анионов по группам.
- 77. Аналитические реакции анионов различных аналитических групп.

Описание технологии проведения

Технология проведения экзамена включает в себя:

- 1. Выдача билетов к экзамену и чистых листов ответов. (Билеты к экзамену выдаются обучающимся индивидуально).
- 2. Фиксирование времени начала и доведение до студентов времени окончания экзамена.
- 3. Ответы обучающихся на билеты к экзамену в письменном виде с заполнением листов ответов. (При необходимости в них кроме текса приводятся рисунки, схемы, таблицы, диаграммы).
- 4. Сбор билетов к экзамену и листов ответов.
- 5. Проверка листов ответов и выставление оценок.

Во время экзамена обучающимся запрещается разговаривать, ходить по аудитории, пользоваться сотовыми телефонами, шпаргалками, конспектами, учебниками и другой учебнометодической литературой, а также вносить пометки в экзаменационные билеты. Студенты, нарушившие перечисленные требования, удаляются с экзамена.

Требования к выполнению заданий, шкалы и критерии оценивания При оценивании результатов обучения на зачете используются следующие показатели:

- 1) знание учебного материала дисциплины;
- 2) умение применять теоретические знания для решения практических задач;
- 3) владение теоретическими основами дисциплины, способность иллюстрировать ответ примерами, фактами, данными научных исследований.

Для оценивания результатов обучения **на экзамене** используется 4-балльная шкала: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно».

Соотношение показателей, критериев и шкалы оценивания результатов обучения на экзамене:

Критерии оценивания компетенций	Шкала оценок
Полное соответствие ответа обучающегося высокому уровню освоения необходимой компетенции. Продемонстрировано знание учебного материала дисциплины, умение применять теоретические знания для решения практических задач, владение теоретическими основами дисциплины, способность иллюстрировать ответ примерами, фактами, данными научных исследований.	Отлично
Достаточное соответствие ответа обучающегося базовому уровню освоения необходимой компетенции. Обучающийся дает правильные ответы на дополнительные вопросы, но недостаточно демонстрирует умение применять теоретические знания для решения практических задач.	Хорошо
Удовлетворительное соответствие ответа обучающегося уровню освоения необходимой компетенции. Обучающийся дает неполные ответы на дополнительные вопросы, демонстрирует частичные знания учебного материала дисциплины, или не умеет применять теоретические знания для решения практических задач.	Удовлетворительно

Неудовлетворительное соответствие ответа обучающегося уровню освоения необходимой компетенции. Обучающийся демонстрирует отрывочные, фрагментарные знания, допускает грубые принципиальные ошибки при изложении учебного материала дисциплины, которые не устранены после дополнительных наводящих вопросов, что соответствует не освоению компетенций.

Неудовлетворительно

20.3 Задания, рекомендованные к использованию при проведении диагностических работ с целью оценки остаточных знаний по результатам освоения данной дисциплины:

ОПК-1. Способен использовать основные биологические, физико-химические, химические, математические методы для разработки, исследований и экспертизы лекарственных средств, изготовления лекарственных препаратов

ОПК-1.2. Применяет основные физико-химические и химические методы анализа для разработки, исследований и экспертизы лекарственных средств, лекарственного растительного сырья и биологических объектов

1) Задания закрытого типа

Критерии оценивания:

- 1 балл указан верный ответ;
- 0 баллов указан неверный ответ, в том числе частично.
- 1. Что называется аналитической пробой?
- 1) проба лекарственного растительного сырья (ЛРС), выделяемая из объединенной пробы и предназначенная для формирования аналитических проб
- 2) часть анализируемого ЛРС, отражающая его качество
- 3) минимальное количество пробы ЛРС, отобранное из каждой единицы продукции
- 2. Реактивы для определения восстанавливающих веществ в воде для инъекций:
- 1) раствор перманганата калия, разбавленная серная кислота
- 2) раствор перманганата калия, разбавленная НСІ
- 3) раствор перманганата калия, разбавленная азотная кислота
- 4) раствор перманганата калия, концентрированная серная кислота.
- 3. Фармакопейный метод количественного определения пероксида (перекиси) водорода:
- 1) йодометрия
- 2) аргентометрия
- 3) перманганатометрия
- 4) комплексонометрия.
- 4. При определении кальция в образце карбоната кальция навеску CaCO₃ растворяют в 2 М HCI, ионы Ca²+ осаждают в виде оксалата. Осадок отфильтровывают, промывают и прокаливают. При этом образуется оксид кальция. Какое соединение является осаждаемой формой?
- 1) CaCO₃; 2)CaCl₂; 3) Ca²⁺; 4) CaC₂O₄; 5)CaO.
- 5. Выберите верные условия осаждения крупнокристаллических осадков
- 1) медленное осаждение из горячих разбавленных растворов при перемешивании
- 2) медленное осаждение из холодных концентрированных растворов
- 3) быстрое осаждение их горячих концентрированных растворов разбавленным раствором осадителя при перемешивании
- 4) медленное осаждение из горячих разбавленных растворов концентрированным раствором осадителя.
- 6. Что из перечисленного неверно?
- 1) осаждаемая форма должна обладать хорошей растворимостью в воде;
- осаждаемая форма должна обязательно иметь постоянный состав и не изменяться при прокаливании;
- 3) оптимальная масса лёгких аморфных осадков при гравиметрических определениях меньше, чем тяжёлых кристаллических;
- 4) молярная масса гравиметрической формы должна быть как можно большей;
- 5) массовая доля определяемого элемента в гравиметрической форме должна быть как можно большей.
- 7. Для того чтобы образовался крупнокристаллический осадок, необходимо:
- 1) осаждение проводить обязательно на холоду;

- 2) добавлять осадитель медленно;
- 3) вести осаждение из концентрированных растворов;
- 4) добавлять в раствор вещества, увеличивающие растворимость малорастворимого электролита;
- 5) добавлять весь осадитель сразу одномоментно.
- 8. Факторы, влияющие на величину скачка титрования сильных протолитов:
- 1) концентрация используемых растворов
- 2) сила электролита
- 3) температура
- 4) все выше перечисленное.
- 9. Точную навеску образца, содержащего NaCl, растворили в воде, получив 100,0 мл раствора. К 10,00 мл этого раствора добавили точный объём 0,1000 М AgNO₃. Непрореагировавший нитрат серебра оттитровали 0,1000 М NH₄SCN. Выберите ряд, в котором приведены верные характеристики описанного выше титриметрического определения
- 1) осадительное / прямое / метод пипетирования:
- 2) кислотно-основное / обратное / метод отдельных навесок;
- 3) осадительное / обратное / метод пипетирования;
- 4) комплексометрическое / косвенное / метод отдельных навесок;
- 5) осадительное / титрование заместителя / метод пипетирования.
- 10. Какие первичные стандартные вещества могут быть использованы для стандартизации раствора HCI?
- 1) $H_2C_2O_4 \cdot 2H_2O$; 2) Na_2CO_3 ; 3) $Na_2C_2O_4$; 4) C_6H_5COOH ; 5) $Na_2B_4O_7 \cdot 10H_2O$
- 11. К 10 мл 0,1 М раствора вещества добавляют 1 каплю 1% этанольного раствора фенолфталеина. В растворах каких веществ при этом произойдёт появление окраски?
- 1) Na₂CO₃; 2) NaH₂PO₄; 3) Na₃PO₄; 4) NH₄CI; 5) NaCl.
- 12. К физико-химическим методам количественного анализа ЛРС относятся:
- 1) рефрактометрия
- 2) комплексонометрия
- 3) спектрофотометрия
- 4) хроматография
- 13. Разделение веществ при использовании метода газо-жидкостной хроматографии происходит за счет разной скорости движения веществ в колонке. Что является подвижной фазой при этом?
- 1) Твердый носитель
- 2) Органический растворитель
- 3) Вода
- 4) Жидкие фазы
- 5) Газ-носитель
- 14. Величину «высота, эквивалентная теоретической тарелке» обозначают в формулах как:
- 1) N 2) **H** 3) Rs 4) α
- 15. Основное уравнение для кинетической теории хроматографии:
- 1) H=A+B+CU
- 2) H=AU+B+C/U
- 3) H=A+BU+C/U
- 4) H=A+B/U+CU
- 16. Детекторы в газовой хроматографии подразделяются на:
- 1) электрохимические и химические
- 2) универсальные и селективные
- 3) с использованием газа-носителя и без использования газа-носителя
- 4) простые и сложные
- 17. Спектральный анализ это
- 1) определение агрегатного состояния вещества по его спектру
- 2) метод определения химического состава вещества по его спектру
- 3) анализ свойства призмы или дифракционной решетки

4) метод определения вида излучения по типу спектра

18. Для выбора аналитической длины волны при фотометрических измерениях предварительно строят кривую светопоглощения, которая представляет собой:

- 1) График зависимости оптической плотности раствора от длины волны падающего света
- 2) График зависимости оптической плотности раствора от концентрации окрашенного раствора.
- 3) График зависимости интенсивности светового потока от толщины поглощающего слоя.
- 4) График зависимости оптической плотности раствора от толщины поглощающего слоя.
- 5) График зависимости оптической плотности раствора от концентрации раствора.

19. Выберите правильное соотношение

- 1) $A=lg(I_0/I)$
- 2) $T = I_0/I$
- 3) $\varepsilon = \lg (I_0/I)$
- 4) $A = e^{-lo/l}$

20. Для количественного определения гидроксида калия выбран метод потенциометрического титрования. Точку эквивалентности в этом методе определяют по резкому изменению:

- 1) Напряжения
- 2) Диффузного тока
- 3) Интенсивности флуоресценции
- 4) Электродвижущей силы
- 5) Силы тока

21. Потенциометрический метод определения рН как наиболее универсальный занесен в Государственную фармакопею. Какой из электродов используют как электрод сравнения?

- 1) Стеклянный
- 2) Хингидронный
- 3) Медный
- 4) Водородный
- 5) Насыщенный каломельный

2) Задания открытого типа

Критерии оценивания:

1 балл – указан верный ответ;

0 баллов - указан неверный ответ, в том числе частично.

1. На какие методы подразделяется гравиметрия?

Ответ: методы осаждения и отгонки

2. Какими свойствами должна обладать осаждаемая форма?

Ответ: обладать малой растворимостью, легко фильтроваться и полностью переходить в гравиметрическую форму.

3. Что такое солевой эффект в гравиметрии?

Ответ: увеличение растворимости осадка за счет увеличения ионной силы раствора

4. Дайте понятие скачка титрования.

Ответ: резкое изменение рН раствора от состояния, когда раствор недотитрован на 0,1 % от объема титранта в точке эквивалентности, до состояния, когда раствор перетитрован на ту же величину.

5. Что такое стандартизация раствора?

Ответ: Установление его точной концентрации

6. Перечислите требования, предъявляемые к кислотно-основным индикаторам.

Ответ: индикатор должен быть чувствителен к минимальному количеству добавляемых сильных кислот или щелочей; равновесие между различно окрашенными ионизированной и неионизированной формами индикатора должно устанавливаться быстро; интервал перехода окраски индикатора не должен быть большим.

7. В чем различие газожидкостной (ГЖХ) и газоадсорбционной (ГАХ) хроматографии?

Ответ: в ГАХ сорбент – твердый, а в ГЖХ – жидкий

8. Для количественного определения этанола был использован метод газовой хроматографии. Какой параметр при этом измеряют?

Ответ: Высота и площадь хроматографического пика

- 9. Укажите, в каком варианте хроматографии можно получить все компоненты в чистом виде? Ответ: проявительной (элюентной)
- 10. Чувствительность фотометрической реакции определяется величиной молярного коэффициента светопоглощения. Указать факторы, от которых он зависит.

Ответ: От природы вещества

11. Как называется спектр, состоящий из отдельных резко очерченных цветных линий, отделенных друг от друга широкими темными промежуткам?

Ответ: линейчатым

12. В каком диапазоне идет поглощение света в фотометрическом анализе?

Ответ: в видимой области спектра

13. Укажите физико-химический метод анализа, основанный на измерении изменяющейся в результате химической реакции электропроводимости исследуемых растворов.

Ответ: Кондуктометрия

14. Укажите метод, основанный на измерении количества электричества, израсходованного на электролиз определенного количества вещества.

Ответ: Кулонометрия

15. В чем отличие прямых и косвенных электрохимических методов анализа?

Ответ: в прямых методах используется зависимость аналитического сигнала от концентрации

3) Расчетные задачи

Критерии оценивания:

1 балл – указан верный ответ;

0 баллов - указан неверный ответ, в том числе частично.

1) В 500 см³ раствора содержится 10,8214 г Na₂CO₃ (хч). На титрование 25,00 см³ этого раствора израсходовано 22,60 см³ раствора HCl. Определите молярную концентрацию и титр раствора HCl.

Решение:

Уравнение реакции: $Na_2CO_3 + HCI = 2NaCI + CO_2 + H_2O$.

1) Определяем, какая масса Na₂CO₃ содержится в 1000 см³ раствора:

в 500 см³ содержится 10,8214 г Na₂CO₃

в 1000 см³ содержится х г Na₂CO₃

$$x = \frac{10,8214 \cdot 1000}{500} \Gamma = 21,6428 \Gamma.$$

2) Вычисляем молекулярную концентрацию эквивалентов раствора №2СО₃:

$$C(1/2 \text{ Na}_2\text{CO}_3) = \frac{m(\text{Na}_2\text{CO}_3)}{M(1/2 \text{ Na}_2\text{CO}_3)}$$

$$C(1/2 \text{ Na}_2\text{CO}_3) = \frac{21,6428}{52,99}$$
 моль/л = 0,4084 моль/л .

3) Вычисляем молекулярную концентрацию раствора НСІ:

$$C(HCl) = \frac{C(1/2 \text{ Na}_2\text{CO}_3) \cdot V(\text{Na}_2\text{CO}_3)}{V(HCl)}$$

$$C(\mathrm{HCl}) = \frac{0.4084 \cdot 25}{22.60}$$
 моль/л = 0,4517 моль/л .

4) Вычисляем титр раствора НСІ:

$$T(HCl) = \frac{C(HCl) \cdot M(HCl)}{1000}$$

$$T(HCl) = \frac{0.4517 \cdot 36.46}{1000} \text{ r/cm}^3 = 0.01647 \text{ r/cm}^3.$$

Ответ: C(HCI)=0,4517 моль/л; T(HCI)=0,01647 г/см³.

2) Рассчитать концентрацию Mg^{2+} (мг/дм³) и молярный коэффициент светопоглощения (ϵ) по следующим данным спектрофотометрического определения: толщина светопоглощающего слоя I=3 см; оптическая плотность (D) стандартного и исследуемого раствора равны 0,41 и 0,60 соответственно; концентрация стандартного раствора C=5,00 мг/дм³.

Решение:

1) Рассчитаем молярную концентрацию стандартного раствора:

$$C_{\scriptscriptstyle M}(Mg^{^{2+}}) = \frac{C(Mg^{^{2+}})}{M(Mg)} = \frac{5,00 \cdot 10^{^{-3}} \text{ г/дм}^3}{24,31 \text{ г/моль}} = 2,1 \cdot 10^{^{-4}} \text{ моль/дм}^3$$

2) По закону Бугера-Ламберта-Бера находим величину молярного коэффициента светопоглощения

$$\varepsilon = \frac{D}{C \cdot l}$$

$$\varepsilon = \frac{0.41}{2.1 \cdot 10^{-4} \text{ моль/дм}^3 \cdot 3 \text{ см}} = 651 \text{ дм}^3 \cdot \text{см}^{-1} \cdot \text{моль}^{-1}.$$

3) С учетом оптической плотности исследуемого раствора находим его молярную концентрацию:

$$C_M(Mg^{2^+}) = \frac{D}{\varepsilon \cdot l}$$

$$C_M(Mg^{2^+}) = \frac{0,60}{651\,\mathrm{дm}^3\cdot\mathrm{cm}^{-1}\cdot\mathrm{моль}^{-1}\cdot3\,\mathrm{cm}} = 3,\!1\cdot10^{-4}\,\mathrm{моль/дm}^3.$$

4) Рассчитаем концентрацию Mg²⁺ (мг/дм³):

$$C(Mg^{2+}) = C_M(Mg^{2+}) \cdot M(Mg)$$
 $C(Mg^{2+}) = 3.1 \cdot 10^{-4} \text{ моль/дм}^3 \cdot 24,31 \text{ г/моль} = 7,54 \text{ мг/дм}^3$

Ответ: $C(Mg^{2+})=7,54$ мг/дм³; $\epsilon=651$ дм³·см⁻¹·моль⁻¹.

ЛИСТ СОГЛАСОВАНИЙ

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

Направление/специальность33.05.01 Фармация	
код и наименование направления/специальности Дисциплина Б1.О. 11 Аналитическая химия код и наименование дисциплины	
Профиль подготовки/специализация <u>Фармация</u> в соответствии с Учебным планом	
Форма обученияочная	
Учебный год <u>2025-2026, 2026-2027</u>	
Ответственный исполнитель к.х.н. заведующий кафедрой аналитической химии	_20
СОГЛАСОВАНО	
Куратор ООП по направлению/специальности	20
подпись расшифровка подписи	
Начальник отдела обслуживания ЗНБ	20
Программа рекомендована НМС <u>химического факультета</u> наименование факультета, структурного подр	 азделения